
Eur. Phys. J. C 1, 627–632 (1998) THE EUROPEAN
PHYSICAL JOURNAL C
c© Springer-Verlag 1998

Hydrodynamics of nuclear collisions with initial conditions
from perturbative QCD

K.J. Eskola1,2, K. Kajantie1,2, P.V. Ruuskanen3

1 CERN/TH, CH-1211 Geneve 23, Switzerland (e-mail: kari.eskola@cern.ch, keijo.kajantie@cern.ch)
2 Department of Physics, P.O.Box 9, 00014 University of Helsinki, Finland
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Abstract. We compute the longitudinal hydrodynamic flow in ultrarelativistic heavy ion collisions at
√

s =
5500 GeV by using boost non-invariant initial conditions following from perturbative QCD. The transfer of
entropy and energy from the central region to larger rapidities caused by boost non-invariance is determined
and the associated decrease in the lifetime of the system is estimated.

1 Introduction

One simple scenario for treating the behaviour of QCD
matter formed in the central region (nearly at rest in the
center of mass frame) in ultrarelativistic heavy ion colli-
sions is to neglect transverse motion and baryon number,
to assume that the initial conditions for longitudinal mo-
tion are longitudinally boost invariant and to assume that
the matter expands isentropically as an ideal fluid. One
then obtains the Bjorken similarity flow [1]. The purpose
of this study is to take the initial conditions essentially as
given by perturbative QCD [2]-[5]. These have two charac-
teristics. Firstly, they are boost non-invariant, there is no
rapidity plateau but a wide gaussian-like rapidity distribu-
tion. Secondly, due to the remarkable small-x increase of
the nucleon structure functions observed at HERA [6] the
initial energy densities are quite large, at LHC energies of√

s= 5.5 TeV almost 1000 GeV/fm3. This leads to rather
long hydrodynamical evolution times (≈ 100 times initial
thermalisation time) and allows a boost non-invariant flow
to develop. In the following we shall, in particular, study
the additional longitudinal flow caused by the maxima of
the initial entropy and energy densities at y = 0 and the
associated transfer of entropy and energy from the y = 0
region to larger rapidities.

We limit this study to LHC energies for the following
two reasons. Firstly, we want to study longitudinal 1+1d
hydrodynamical effects and at LHC, due to the very large
initial temperatures, this period lasts by far the longest.
Also, during all this period the matter remains in the
high T plasma phase. All the complications associated
with the phase transition and the hadronic phase arise to-
gether with the need to go over to 1+3d expansion [7]-[8].
Within the 1+1d approximation these late-time features
have been studied in, say, [9]. Secondly, at LHC energies
the perturbative computation of the initial conditions is

more reliable. At RHIC energies of
√

s= 200 GeV there
is still a sizable soft component present, which makes the
buildup of the initial energy density slower and would re-
quire separate modeling [10]. This is even more so at the
SPS energies of

√
s= 20 GeV, where boost non-invariant

initial conditions are modelled by using rapidity distribu-
tions of final state particles [11] or by forcing the flow to
be boost invariant [12].

We also emphasize that the main aim is to study the
evolution of the flow under a set of approximations which
will need corrections when applied to the physical situ-
ation. These include full thermalisation and validity of
given initial conditions at very large rapidities. Also fluc-
tuations in the initial conditions [13] and their variation
with transverse coordinate will have to be taken into ac-
count.

2 The equations

For the ultrarelativistic 1+1–dimensional similarity flow
it is convenient to replace xµ = (t, x) by the proper time
τ and the space-time rapidity η:

τ =
√

t2 − x2, η =
1
2

log
t + x

t − x
, (1)

t = τ cosh η, x = τ sinh η. (2)

The variable
t̂ = log(τ/τi) (3)

also naturally appears. The general equation of state with
one conserved quantum number is

p = p(T, µ), (4)

s =
∂p

∂T
, nq − nq̄ ≡ n = 3nB =

∂p

∂µ
, (5)

ε = Ts − p + µn.
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Fig. 1. Section of space-time between two flow lines (15) and
two lines of constant proper time

The aim now is to determine, for given initial conditions,
the pressure p(t, x) and the flow v(t, x) ≡ tanhΘ(t, x)
from the hydrodynamic equations

∂µTµν = 0, ν = 0, 1, ∂µJµ
B = 0, (6)

where

Tµν = (ε + p)uµuν − pgµν , Jµ
B = nBuµ, (7)

uµ = (γ, γv) = (coshΘ, sinhΘ). (8)

From (7) and (5) it follows that uν∂µTµν − 3µ∂µJµ
B =

T∂µsµ, where sµ = suµ is the entropy current, so that
these equations imply entropy conservation:

∂µsµ = 0, sµ = suµ. (9)

To express (6) in component form it is convenient to
take their components parallel (uν∂µTµν = 0) and or-
thogonal ((gαν − uαuν)∂µTµν = 0, α = 0, 1) to uµ. The
equations to be solved then become [14]

(∂t̂ + v̄∂η)ε + (ε + p)(v̄∂t̂ + ∂η)Θ = 0, (10)
(v̄∂t̂ + ∂η)p + (ε + p)(∂t̂ + v̄∂η)Θ = 0, (11)

(∂t̂ + v̄∂η)nB + nB(v̄∂t̂ + ∂η)Θ = 0, (12)

where
v̄(τ, η) = tanh[Θ(τ, η) − η)], (13)

with given initial conditions T = T (τi, η), µ = µ(τi, η).
To correctly interpret the numerical results it is useful

to have a concrete picture of the role played by the con-
servation laws in the flow. This is obtained by writing for
any conserved vector V µ

0 =
∫

d2x ∂µV µ =
∫

C

dσµV µ, (14)

with dxµ = (dt, dx) and dσµ = (dx, dt) and choosing the
path as shown in Fig. 1. Here the horizontal lines are two
lines of constant τ while the vertical lines are chosen as
flow lines η = ηflow(τ), defined as the solutions of

dx(t)
dt

= v(x(t), t) ⇒ τ
dη

dτ
= v̄(τ, η(τ))

= tanh[Θ(τ, η) − η)]. (15)

Computing the line integral (14) over various portions of
the path in Fig. 1 gives the fluxes of V µ through these
portions; their total sum has to vanish.

Take first V µ = sµ. Converting the line integral in (14)
to the variables τ, η using uµ = (cosh Θ, sinhΘ) one finds
that

∫
C

dσµsµ =
∫

C

τ cosh(Θ − η)s

×[dη − tanh(Θ − η)dτ/τ ]. (16)

Thus the entropy flux through a flow line (15) is zero
(dσµuµ = 0 is an equivalent definition of a flow line) while
the flow through a line τ = constant is

S(τ, η1 < η < η2) =
∫ η2

η1

dη τs(τ, η) cosh[Θ(τ, η) − η].

(17)
Varying now τ and letting η1(τ), η2(τ) follow flow lines,
(14) implies that the integral (17), the total entropy mea-
sured between two flow lines at a fixed proper time, is
constant, independent of τ . A similar equation holds for
Jµ

B .
We may also apply (14) to the energy and momentum

fluxes T 0µ and T 1µ. Since they are not proportional to uµ,
the result becomes more complicated. A similar computa-
tion gives that the flux through a flow line is:

FE(τ1 < τ < τ2) = −
∫ τ2

τ1

dτ
p sinhΘ

cosh[Θ − ηflow(τ)]
, (18)

FP (τ1 < τ < τ2) = −
∫ τ2

τ1

dτ
p cosh Θ

cosh[Θ − ηflow(τ)]
, (19)

where the arguments of Θ, p are τ, ηflow(τ). Further, the
energy and momentum fluxes through a segment τ = con-
stant are:

E(τ, η1 < η < η2) =
∫ η2

η1

dη τ [ε cosh Θ cosh(Θ − η)

+p sinhΘ sinh(Θ − η)], (20)

P (τ, η1 < η < η2) =
∫ η2

η1

dη τ [ε sinhΘ cosh(Θ − η)

+p cosh Θ sinh(Θ − η)], (21)

where the arguments of ε, p, Θ are τ, η. Referring to Fig. 1,
the total sum of two contributions of type (18) and of two
contributions of type (20) has to vanish for T 0µ; similarly
for T 1µ. This implies that the energy (20) or momentum
(21) between two flow lines is not constant but changes
due to energy or momentum flow across the flow line: work
done against expansion.

Note the different flow-dependent factors in (17) and
(20): the total energy E contains an additional boost fac-
tor cosh Θ not present for S.

To have a still simpler view of the conservation laws,
assume a similarity flow, Θ(τ, η) = η or v(t, x) = x/t and
an equation of state p = p(ε). Then v̄ = 0 and from (15)
the flow lines are η = constant and we take them to be
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±η0. For this very special flow the equations of motion (6)
become

τ∂τ ε + ε + p = 0, (22)
∂ηp = 0, (23)

τ∂τn + n = 0, (24)
τ∂τs + s = 0, (25)

(the last follows from the first and third and ε+ p = Ts+
µn) and further imply that

p = p(τ), ε = ε(τ), s = s(τ, η) =
τi

τ
s(τi, η),

n = n(τ, η) =
τi

τ
n(τi, η), (26)

i.e. p, ε depend on τ only while s, n can depend also on
η in such a way that Ts + µn depends only on τ . The
conservation laws of sµ, T 0µ then simplify to

∫ η0

−η0

dη [τ1s(τ1, η) − τ2s(τ2, η)] = 0, (27)
∫ η0

−η0

dη cosh η [τ1ε(τ1) − τ2ε(τ2)]

= 2
∫ τ2

τ1

dτ p(τ) sinh η0; (28)

similar ones hold for Jµ
B , T 1µ. Equation (27) is clearly an

integrated form of (25). In (28) the η dependent parts
factor and match on two sides of the equation. The τ de-
pendent part explicitly shows how the change in ε(τ)τ is
related to pdV ∼ pdτ .

A further step of simplification would be to assume a
massless equation of state, p = ε/3 = aT 4 + bµ2T 2 + cµ4,
a, b, c = constants. Then a solution with a similarity flow
would be

T (τ, η) =
(τi

τ

)1/3
T (τi, η), µ(τ, η) =

(τi

τ

)1/3
µ(τi, η),

p(τ) =
(τi

τ

)4/3
p(τi), (29)

where T (τi, η), µ(τi, η) are so constrained that p(τi) is in-
dependent of η. This is the standard Bjorken flow [1] gen-
eralised by the inclusion of baryon number. Putting µ = 0
finally gives the Bjorken flow.

3 Initial conditions

One expects the initial net baryon number to very small
near y = 0; in [5] the net baryon number-to-entropy ratio,
B/S was computed to be about 1/5000. Hence, we shall
put the chemical potential µ = 0. Further, we are inter-
ested in the evolution of the system in the plasma phase,
T = Tc...7Tc and choose the equation of state to be p =
p(T ) = ε/3 = aT 4, a = constant, s = p′(T ) = (ε + p)/T .
According to lattice data for pure SU(3) [15] the validity
of p = ε/3 improves with increasing T so that the error is
20% at T = 2Tc and 10% at T = 3Tc.
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Fig. 2. The initial condition for ε(τi, η) for
√

s = 5500 GeV.
The dashed curve is the gaussian fit, (31), with σ = 3.8

The initial conditions have to specify ε(τi, η) and Θ(τi,
η). For the initial flow we shall simply take a similar-
ity flow, Θ(τi, η) = η, in order to study how boost non-
invariance affects it. The initial conditions for the energy
density are computed by extending the calculations of [4]-
[5] to all rapidities. The initial energy per unit rapidity in
the local rest frame equals the transverse energy of pro-
duced minijets computed from

ε(τi, η) =
dE

dη

1
V

(30)

≈ TAA(b = 0)
∫ ∞

p0

dpT pT
dσNN

dpT dy
· 1
V

,

where the nuclear overlap function is TAA(0)
≈ A2/(πR2

A) ≈ 32/mb for Pb+Pb, the volume per unit
rapidity is V = τiπR2

A, 1/τi = p0 = 2 GeV and the inclu-
sive gluon jet production cross section in NN collisions is
computed in [5]. The results for τi = 0.1 fm are shown in
Fig. 2 for LHC energies,

√
s= 5500 GeV, together with a

gaussian fit to the central region

ε(τi, η) = ε0 exp[−η2/(2σ2)], (31)

with σ = 3.8. The distribution is seen to be quite broad. In
this sense boost non-invariance is quite mild in the central
region, even though evidently the initial condition has to
drop faster than a gaussian at the ends of phase space. As
a side remark, at RHIC energy

√
s= 200 GeV the width

parameter is σ = 2.05.
In the initial values of εi in Fig. 2 only gluons with

pT ≥ 2 GeV are included. The value 2 GeV corresponds
to the saturation limit at LHC energies [5] and the result-
ing εi can be expected to be a good estimate for the total
energy density. At RHIC energies the saturation limit is
lower, only about 1 GeV. This is so low a scale that per-
turbation theory becomes unreliable. One could also try
to keep the minimum pT of partons included in the com-
putation at the fixed value of 2 GeV; at RHIC energies
one then should also include a sizable (about 50%) soft
component if one wants to model the entire event. Mod-
eling the soft component is certainly possible but we wish
to avoid this phenomenological analysis [10] in the present
work.
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According to (20) the total initial energy carried by
the flow in the interval −η0 < η < η0 is, estimating the
transverse area to be πR2

A,

Etot(τi) = πR2
A

∫ η0

−η0

τidη cosh η ε(τi, η)

≈
∫

pT >p0,|y|<η0

d3p E
dσNN

d3p
· TAA(0). (32)

Here the first part is a general relation for a flow Θ = η;
the second part shows where it is computed from. Due
to the boost factor cosh η, which in the jet computation
corresponds to the weight factor E, most of the energy is
carried by flow at large rapidities. When η0 approaches
the beam rapidity ybeam, the error in the jet computation
grows for two reasons: firstly, baryon number will be im-
portant at large rapidities and secondly, physics there is
not that of independent 2→ 2 collisions. However, this er-
ror is important only at very large values of η, where the
energy density is already small. It thus will not affect the
conclusions of this hydrodynamical study.

4 Analytic approximations

We are studying modifications to the Bjorken flow and it
is appropriate to ask whether they in some limit can be
described analytically. Consider the limit σ � 1, a broad
gaussian (31). Writing (t̂ = log(τ/τi))

ε(τ, η) = ε0 exp{−4
3
t̂ − η2

2σ2 + g(τ)}, (33)

Θ(τ, η) = η[1 + f(τ)], (34)

linearising (11–12) under the assumptions f, g, η2/σ2 � 1
and integrating, one obtains

f(τ) =
3

8σ2 [1 − exp(−2
3
t̂)], (35)

g(τ) = − 1
2σ2 {t̂ − 3

2
[1 − exp(−2

3
t̂)]}. (36)

The linearisation ∂t̂f � f2 demands that

t̂ � 3 log(
4
3
σ). (37)

Furthermore, for the flow lines one obtains

log[ηflow(τ)/η0] =
3

8σ2 {t̂ − 3
2
[1 − exp(−2

3
t̂)]} (38)

These equations contain the following natural expec-
tations:

– The energy density at η ≈ 0 decreases faster than in
the Bjorken flow due to energy moving to larger η. For
small times

ε(τ) = ε0 exp[−4
3
(t̂ +

t̂2

8σ2 + ...)]; (39)
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Fig. 3. The energy density scaled by the Bjorken flow,
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Fig. 4. Curves of constant ε(τ, η) for
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s = 5500 GeV. The
curves from below at η = 0 correspond to ε = 900,117,15,2
GeV/fm3. The vertical lines are flow lines (η = constant for
Bjorken flow). The thick flow lines are used to compute Fig. 6.
The dotted lines are the leftmost characteristic curve C+ and
the rightmost C−, between which the computation has to re-
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– With increasing time the flow is accelerated relative to
the similarity flow. For small times

Θ(τ, η) = η(1 +
t̂

4σ2 + ...); (40)

– The flow lines bend outwards. For small times

ηflow(τ) = η0(1 +
t̂2

8σ2 + ...). (41)

5 Numerical results

The method of characteristics [16] is particularly suited
for 1+1 dimensional hydrodynamical problems. First the
differential equation [14]

dη

dt̂
= tanh[Θ(t̂, η) − η ± ys], (42)

where ys = tanh cs = tanh(1/
√

3), defines the two fam-
ilies C± of characteristics. This is like (15) defining the
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Fig. 5. The flow rapidity scaled by η, Θ(τ, η)/η, for
√

s = 5500
GeV. The curves at η = 0 correspond from below to values of
τ as in Fig. 3

flowlines, but modified by the sound rapidity ±ys. Along
each family of curves the changes of Θ and ε are related
by

dΘ ± cs

ε + p
= 0, along C±. (43)

A code integrating ε, Θ, starting from the initial values
ε(τi, η), Θ(τi, η) = η by determining the characteristic di-
rections, and then the new values of ε, Θ by stepping in
the characteristic directions, is easily constructed.

Results of numerical integration of the equations are
shown in Figs. 3-6 for LHC (

√
s= 5500 GeV). The energy

density, scaled by the Bjorken flow, is shown in Fig. 3 as a
function of η at different times. Curves of constant energy
density on the τ, η plane are plotted in Fig. 4. The energy
density in Fig. 3 at η = 0 is seen to decrease somewhat
faster than in the Bjorken case. This is due to leakage of
energy to larger rapidities, seen as an increase in ε at large
η and described analytically in Sect. 4. During the whole
duration of the plasma phase, ε>∼2 GeV/fm3, or from τi

to about 100τi, this additional decrease is about 12% at
LHC.

Converted to the lifetime of the system in the plasma
phase (the time it takes to decrease from εi to εc) the
above result implies that the density gradient in the lon-
gitudinal direction decreases the lifetime by about 9%.
This is opposite to the effects of dissipation: in the case of
a rapidity plateau, the fastest decrease of energy density
is obtained in the case of full thermalisation; dissipative
effects increase the lifetime of the system [10]. The longest
lifetime is obtained for free-streaming expansion.

Figure 4 also shows flow lines, which are constant in
η in the Bjorken case but bend outwards in the present
case. We do not show the numerical grid of characteristic
curves, but the leftmost characteristic curve C+ and the
rightmost one C− are plotted in this figure. The numerical
computation cannot be extended outside them.

The flow Θ(τ, η), scaled by the Bjorken flow η, is shown
in Fig. 5. The initial flow Θ = η is rapidly accelerated at
large |η|, due to increasing ∂ηp/p, (=η/σ2 for the gaussian
parametrization) but this is already in the domain where
the details of the model need not be correct. In the relevant
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lines in Fig. 4 for

√
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to τ = τi and the solid one to τ = 100τi

region near η = 0 the effects are seen to be small, a few
%.

As discussed earlier, the total entropy between two flow
lines, (17), is constant. However, the flow rapidity Θ(τ, η)
changes along the flow lines changing also the rapidity in-
terval between the flow lines. As a result the entropy of
given fluid element is shifted in rapidity and its amount
per unit flow rapidity is changed. With our initial condi-
tions the shift is always to larger rapidities — higher pres-
sure in the central region accelerates the fluid towards the
ends — and the rapidity intervals between the flow lines
increase. The net result is that the entropy per unit flow
rapidity, which can be expressed as

dS(τ, η)
dΘ

= πR2
Aτs(τ, η) cosh[Θ(τ, η) − η]

dη

dΘ

∣∣∣∣∣
fixed τ

, (44)

will decrease in the central region and the overall distri-
bution will get wider.

The result of our computation for dS/dΘ is shown in
Fig. 6. In η the computation is extended between the two
(arbitrarily chosen) thick flow lines in Fig. 4. The dotted
curve shows the initial distribution at τi = 0.1 fm and the
solid curve the final distribution at τ = 100τi. Note that
the end points move outwards due to a combination of two
effects: the flow lines bend outwards (Fig. 4) and the flow
is accelerated relative to η (Fig. 5).

To obtain a measurable distribution we should be able
to treat the hadronization and to fold the thermal motion
of final particles with the collective motion of the flow
(after expressing the entropy in terms of particle number
densities). At present, we do not have a reliable way to
estimate the effects of hadronization but if it has any ef-
fects on flow we would expect them to further widen the
rapidity distribution as the hadronization proceeds from
the lower density fragmentation regions to the central re-
gion. Thermal folding involves flow velocities effectively
over two-to-three rapidity units. It will lead to a some-
what wider overall rapidity distribution but in the smooth
central region the effect of folding is small. We conclude
that our result of Fig. 6 gives the minimum change from
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the initial state at τi to the rapidity distribution of final
particles.

6 Conclusions

In the case of a fully developed rapidity plateau, there
is a very simple hydrodynamical scaling solution for the
longitudinal expansion of QCD matter produced in ultra-
relativistic heavy ion collisions [1]. In reality, there need
not be a rapidity plateau, and we have studied the lon-
gitudinal flow using a rapidity distribution of the initial
energy density obtained from computations in perturba-
tive QCD. Then the rapidity distribution is approximately
gaussian but very broad, and thus the deviations from the
Bjorken flow are not very large. To analyze the general
features of the flow we also derived equations for the to-
tal entropy and energy between two flow lines and gave
approximate solutions in the limit of broad gaussians for
the central region.

The finite width of the rapidity region leads to a trans-
fer of energy from the central region to larger rapidities.
As a consequence the rapidity distribution gets wider and
the energy density in the central region decays faster than
for a boost invariant flow. Correspondingly, the lifetime
of the system (the time it takes to decrease from εi to
εc) decreases by about 10%. A similar decrease would be
caused by transverse density gradients. On the other hand,
dissipative effects would increase the lifetime.

The longitudinal density gradient also leads to some
but very small acceleration of the longitudinal flow: the
effect in the central region is rather on the 1% than 10%
level. In the sense our results confirm the assumptions in
[9], called the frozen motion model in [12], that in estimat-
ing thermal effects in the central region it is reasonable to
assume that at LHC energies the longitudinal flow velocity
scales even when the density distributions are not boost
invariant.
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